6th lecture

The electrostatic field in insulators

Introduction.

 An experiment with insulators placed between the plates of a capacitor


As we have already seen in the case of the fundamental experiment with an insulator in electrostatics: the electric field has an effect on an insulator. We explained that effect with the appearance of the polarization charges on the surface of the insulator. These polarization charges are ordinary electric charges with one exception: they cannot be removed from the insulator. To make a distinction charges on conductors (which are not bound to the material thus can be removed freely) are called as “free charges” or sometimes “conducting charges”, while charges bound to the insulator are called as “polarization charges”.

When polarization charges appear on an insulator these charges modify the  electric field which caused the polarization . To demonstrate this we can place insulator plates between the plates of a charged parallel plate capacitor. An electroscope, connected parallel with the plates of the capacitor, indicates a decrease of the electric voltage of the capacitor whenever an insulator plate is shifted between the plates of the capacitor. The original voltage is restored, however, when the insulator plates are withdrawn from the capacitor. This experiment proves that the polarization charges appearing on the insulator plate modify the electric field inside the capacitor.
We remark that insulators are also called as dielectric materials or simply as dielectrics. The name dielectric means that the electric field – a part of the E lines – can go through these materials in contrast to the conductors, which materials does not allow any E lines to go across them.
All polarization phenomena will be explained and described by assuming that there are electric dipoles inside the insulator, dipoles, which can be created and affected by the electric field. Thus in the next paragraphs we will discuss the concept of the electric dipole and how can we apply this concept to describe the polarization in insulators. 

6. The electric dipole moment. Potential field of an electric dipole and  of an arbitrary distribution of discrete charges

6.1 The electric dipole moment

The moment of a charge is the charge multiplied by its position vector ri : 

mi = Qi(ri

The moment of a charge distribution system is the sum of the individual moments:

m = ( Qi(ri
The electric dipole is a special charge distribution consisting of only two charges: +Q and –Q.  Such a dipole placed into a Cartesian coordinate system is depicted in Fig. 6.1.
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Figure 6.1. An electric dipole in a Cartesian coordinate system. 

The position vector of charge +Q is r+ while the position vector of –Q is r-
The moment of a dipole charge system is the so called dipole moment denoted by p is 

p = r+Q – r-Q = Q (r+ - r-) = Q(r.

As we can see the vector of the dipole moment points from the negative charge to the positive one. (Why? Let us explain that regarding Fig. 6.1 ). The magnitude of the dipole moment is the product of the charge Q and the distance (r=((r(.

In the following we want to show that the electric field of an arbitrary charge distribution looks like the electric field of a dipole if we study the field far away from the charge distribution. This is an important problem because within a molecule complex charge distributions can occur. If we can prove that the electric field of such a molecule looks like the electric field of a dipole then on a macroscopic scale (on a scale which is much larger than the atomic or molecular scale) all molecules can be regarded as dipoles and an insulator can be treated as a medium filled with dipoles.

6.2 Potential field of an electric dipole


As a first step let us regard the potential field of a single dipole. (We deal with the potential field instead of the electric field itself. This is because the electric field can be calculated from the potential field as its negative gradient and the potential field is a scalar field which is more easy to calculate with than with the electric field itself, which is a vector field.) Let us regard Figure 6.2 below! 
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Figure 6.2

Vectors applied in the calculation of the potential field of a dipole in a point P far away from the dipole. r+ is the position vector of +Q, r- is the position vector of –Q, 

r is the radius vector of point P, R+ is a vector pointing from +Q to the point P,

 and R- is a vector pointing from –Q to P.
The electric potential ( in the point P is the sum of the electric potentials (+ and (- which are the potentials in the point P due to the charge +Q and –Q respectively:
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The above result is exact no approximation was applied to derive it. We can simplify the above formula with some approximations, however, regarding the condition that the point P is far away from the origin. In this case the angle ( between r and R+ is very small  ((0. (See Fig. 6.3 ) 
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Figure 6.3

Consequently the scalar product of the two vectors

r(R+ = (r(((R+(( cos( ( r(R+(cos0 = r(R+
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Thus we can calculate R+ with the following approximation:
According to Fig. 6.3  r++R+=r, consequently R+=r-r+, thus 
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The second algebraic transformation was made to apply a further approximation now for the reciprocal of  R+ :
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In a similar manner:
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Substituting the above two approximations to the exact expression for the dipole potential we can obtain the following result: 
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that is the potential field of a dipole can be approximated as:

where p = Q(r+-r-) is the dipole moment.

6.3 Potential field of a discrete charge distribution 

Finally we are going to study the potential field of a discrete charge distribution. (That is a system of point charges.) We will assume here again that all the point charges are relatively close to the origin of a Cartesian coordinate system while the point P –where we study the potential field of the charge distribution – is far away from that origin. Applying similar approximations like in the previous paragraph we can obtain the following expression for the potential field of a charge distribution:
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Now, if we assume that the charge distribution is the charge distribution of a molecule where the number of the positive and negative charges are equal then (Qi=0. 
Moreover we can use that the moment of a charge distribution is m = (riQi, consequently the potential field of a neutral charge distribution in the point r can be approximated as: 
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Now we can realize that the potential field of a neutral charge distribution is equivalent of the potential field of a dipole whose dipole moment is equal to the dipole moment of the neutral charge distribution i.e. 
p=m.
Thus we could prove that looking at molecules from a far away point (from a distance which is significantly larger than the molecular scale) all molecules can be regarded as simple dipoles. 

6.2 The electric polarization

6.2.1 Conductor and insulator in an electric field


As we have mentioned earlier there are two main groups of materials regarding their electric behavior: conductors and insulators. No electric field can be established inside a conductor because the mobile electric charges always present in a conductor would start to migrate. In other words, in a conductor, electric current should flow in the presence of an electric field. While this is allowed in many chapters of electrodynamics it is excluded in the case of electrostatics. Thus, if a conductor is placed into an electrostatic field - e.g. into the field of a charged capacitor like in the Figure 6.4 a) below – then the electric field of the capacitor should not penetrate into the conductor. What prevents that penetration? The answer is the induced charge on the surface of the conductor. On the surface of the originally neutral conductor  induced electric charges appear and these charges shield the outside field. This way all E lines start always from or end at the induced surface charges and blocks the penetration of any  E into the conductor. This is the principle of the electric shielding or screening.
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Figure 6.4 Electrostatic shielding in a conductor a), and polarization in an insulator b) 

when these materials are placed in the electric field of a charged capacitor

	a) conductor
	b) insulator



When we place an insulator in the electrostatic field like in Fig. 6.4 b), then, according to the experimental observation, also a surface charge apears, the so called polarization charge. The polarization charge also shields a part of the outer elctric field in a similar way like the iduced charge does in conductors. There are, however, two important differences between the induced and the polarization charge. 

i) The polarization charge of an insulator cannot screen the outer electric field completely thus a part of the E lines permeates through the dielectrics. 

ii) The polarization charge is bound to the insulator and cannot be removed from there while the free or conductive charge can be removed from a conductor.

To understand these features of the polarization charge we will study theoretical models of a polarizable medium discussed in the next paragraph.

6.2.2 Molecular and continuous models for polarization in an insulator


When constructing a model for a polarizable medium our starting point is the hypothesis supported by the experiments that the effect is due to the electric dipoles of the medium. 

Molecular description. Orientation and induced polarization. 

The visual picture of dipole molecules is easy to understand. We know that certain molecules like the molecules of water for example, are permanent dipoles. These permanent dipoles are orineted in an electric field, but the orientation is hampered by the thermal motion of the dipole molecules. Increasing the electric field will increse their orientation, thus the polarization of the medium. The term used for this phenomenon is orientation polarization. Other molecules are not permanent dipoles, like benzene for example, but even these molecules become dipoles in a polarizing electric field due to a shift of the positive and negative charges inside the molecule. Again, the higher the elctric field the more polarized the molecule. This is the so called induced polarization. 

From their molecular data the polarization properties of the liquid water and benzene can be calculated. Application of such models working with molecular models and statistical “ensembles” of the dipole molecules requires the methods of statistical mechanics. Presently, however, we do not need such a detailed description on an atomic level. For a macroscopic description of the polarization phenomena we will use the more simple continuous model of the dielctric medium.

Continuous model of a polarized insulator

In a homogeneous model the nonpolarized insulator can be regarded as a superposition of homogeneously distributed positive and negative charges where the center of gravity of these charge clouds coincide, thus the resulting charge density is zero everywhere. 

We can illustrate the homogeneous cloud of positive and negative charges with a red and a blue transparent plastic foil. In a nonpolarized insulator the red and the blue foils overlap (they cover each other completely): the whole medium is neutral and we can see a uniform violet color everywhere, which a mixture of the red and blue colors.

The polarization of the insulator means that the center of gravity of the positive charge is shifted with respect to that of the negative cloud or vice versa. In a homogeneous medium the charge separation should be also homogeneous: thus the red foil (representing the positive charges) will move as a rigid body with respect to the blue foil (representing the negative charges). After a small shift of the red foil most of the regions will be still violet (i.e. neutral) but a thin red and a similarly thin blue region appear at the opposite edges of the foils representing positive and negative surface polarization charges. (The thickness  of the red and blue regions should be small because the charge shift associated with the polarization takes place on a molecular scale. Thus on a macroscopic scale polarization charge can be also treated as a two dimensional charge distribution like the distribution of the free charge on the surface of a conductor.) 


Let us illustrate the polarization charge shifts of the homogeneous model with a simple example shown in Figure 6.5. A slab of homogeneous isotropic dielectrics is placed between the plates of a capacitor. The surface and the thickness of the slab are denoted by A and d, respectively. In the beginning the capacitor is not charged (as shown in Figure 6.5 a) ). In this case the positive and negative charge clouds in the insulator overlap completely: the dielectrics is not polarized. 


[image: image3.wmf]
Figure 6.5 Distribution of the positive and the negative charge density in a dielectrics

	a) without a polarizing electric field,
	b) in the presence of an  electric field.
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 denotes the density of the positive and the negative charges separately as a function of the position.  
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  is the relative shift of the charge clouds due to the electric field 

The dielectrics gets polarized, however, if an electric field is established in the capacitor. In this case the negative charge cloud moves closer to the positive plate, and vice versa. Let us assume that the positive cloud was shifted by a distance 
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 with respect to the negative one. Based on the Figure the negative polarization charge at the surface of the insulator (facing toward the positive electrode) can be calculated with the formula 

Q-pol = -((0((A((.

At the same time a positive polarization charge of the same magnitude appears on the opposite side of the insulator. Here 
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 is the absolute value of the charge density either of the positive or the negative charges which can move in the molecules of the insulator. This 
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 was used mainly to produce a graphic description of the polarization. The important result is that a surface charge appears as a result of the polarization thus we have a surface density of the polarization charges the absolute value of which can be expressed in the above example as
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Now let us introduce the concept of the electric polarization P. This vector dscribes the polarization satate of the insulator. If the insulator is polarized then this vector gives the direction of the local polarization and its degree. That degree can be given as the density or the concentration of the dipoles:
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where (P is the dipole moment of the volume element  (V. P can be expressed with the polarization charge density. Let us regard again the slab depicted in Figure 6.5 b) with the crossectional area A and length d . The dipole moment of that slab is 
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where 
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 is the unit vector pointing in the direction of the dipole moment (that is a direction pointing from the negative charge toward the positive one. The dipole density of the slab is homogeneous thus it can be calculated with the following formula:
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Thus we can conclude that when the plain A of the slab is perpendicular to the polarization vector then the absolute value of the polarization vector is equal to the polarization charge density: 
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But what is the relationship between P and (pol when the cut plain of an insulator is not perpendicular to P? It can be proven that in this case 
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where n is the normal vector of the cut plain of the insulator and n points outward from the insulator. We can check that the above scalar product really gives the correct result for (pol for all sides of the slab.

6.3 The vector of the electric induction (or displacement) D in an insulator

The electric induction in vacuum and in an insulator 


The generally valid definition of D (as it was mentioned in the introduction) is the following:
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The above definition is valid for a dielectric medium and also for vacuum. In vacuum, however, P=0, thus the formula simplifies to
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Until now, we  studied electrostatics in vacuum thus we used the above simple relationship. Actually, as in vacuum D can be substituted with ε0E, we could have avoided the use of D in vacuum completely. 

In the case of a dielectric medium D plays a more important role, however. As we know in a dielctrics  two different types of charges can occur: the free and the polarization charge. The sum of the two is the resulting or the total charge of the dielectrics. In a similar manner we can speak about free and polarization charge densities and the sum of these two gives the total charge density:

(free + (pol = (tot
We know that P lines follow the dipole chains, thus they start from a negative polarization charges and end in the positive ones. This means that the source density of the P lines divP at a given point of the dielectrics should be equal to the negative polarization charge density (pol at the same point:

divP = -(pol. 

In vacuum we have already seen that divE, the source density of the E lines can be given as

divE = (/ε0.
In vacuum there is no polarization charge thus  

( = (free  = (tot
cosequently 

divE = (tot/ε0 

and

div ε0E = (tot.

In other words the source density of the vector field ε0E is the total charge density. We can assume that the same relationship holds not only in vacuum but also in an insulator as E lines  start both from free and polarization charges.

Now we can substitute the source densities div ε0E  and divP  into an expression for (free :

(free + (pol = (tot
(
(free = (tot - (pol 
(
(free = div ε0E + divP 
this way we can obtain that

(free = div (ε0E + P)
( 
(free = divD .

Thus if we accept the definition D = ε0E + P  then  
divD = (free ,
which means that at a given point of the dielectrics the source density of the D lines (divD) should be equal to the free charge density ((free ) at the same point. In other words with the help of the newly introduced vector D Maxwell’s fourth equation can be written in the same form in a dielectrics like in the vacuum.
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